Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.446
Filtrar
1.
Int Ophthalmol ; 44(1): 174, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613630

RESUMO

PURPOSE: This study aims to address the challenge of identifying retinal damage in medical applications through a computer-aided diagnosis (CAD) approach. Data was collected from four prominent eye hospitals in India for analysis and model development. METHODS: Data was collected from Silchar Medical College and Hospital (SMCH), Aravind Eye Hospital (Tamil Nadu), LV Prasad Eye Hospital (Hyderabad), and Medanta (Gurugram). A modified version of the ResNet-101 architecture, named ResNet-RS, was utilized for retinal damage identification. In this modified architecture, the last layer's softmax function was replaced with a support vector machine (SVM). The resulting model, termed ResNet-RS-SVM, was trained and evaluated on each hospital's dataset individually and collectively. RESULTS: The proposed ResNet-RS-SVM model achieved high accuracies across the datasets from the different hospitals: 99.17% for Aravind, 98.53% for LV Prasad, 98.33% for Medanta, and 100% for SMCH. When considering all hospitals collectively, the model attained an accuracy of 97.19%. CONCLUSION: The findings demonstrate the effectiveness of the ResNet-RS-SVM model in accurately identifying retinal damage in diverse datasets collected from multiple eye hospitals in India. This approach presents a promising advancement in computer-aided diagnosis for improving the detection and management of retinal diseases.


Assuntos
Doenças Retinianas , Máquina de Vetores de Suporte , Humanos , Índia/epidemiologia , Diagnóstico por Computador , Hospitais , Doenças Retinianas/diagnóstico
2.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38624364

RESUMO

Brain-computer interface (BCI) technology based on P300 signals has a broad application prospect in the assessment and diagnosis of clinical diseases and game control. The paper of selecting key electrodes to realize a wearable intention recognition system has become a hotspot for scholars at home and abroad. In this paper, based on the rich-club phenomenon that exists in the process of intention generation, a phase lag index (PLI)-rich-club-based intention recognition method for P300 is proposed. The rich-club structure is a network consisting of electrodes that are highly connected with other electrodes in the process of P300 generation. To construct the rich-club network, this paper uses PLI to construct the brain functional network, calculates rich-club coefficients of the network in the range of k degrees, initially identifies rich-club nodes based on the feature of node degree, and then performs a descending order of betweenness centrality and identifies the nodes with larger betweenness centrality as the specific rich-club nodes, extracts the non-linear features and frequency domain features of Rich-club nodes, and finally uses support vector machine for classification. The experimental results show that the range of rich-club coefficients is smaller with intent compared to that without intent. Validation was performed on the BCI Competition III dataset by reducing the number of channels to 17 and 16 for subject A and subject B, with recognition quasi-departure rates of 96.93% and 94.93%, respectively, and on the BCI Competition II dataset by reducing the number of channels to 17 for subjects, with a recognition accuracy of 95.50%.


Assuntos
Encéfalo , Intenção , Humanos , Eletrodos , Máquina de Vetores de Suporte
3.
Sci Rep ; 14(1): 8204, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589379

RESUMO

Seizure prediction remains a challenge, with approximately 30% of patients unresponsive to conventional treatments. Addressing this issue is crucial for improving patients' quality of life, as timely intervention can mitigate the impact of seizures. In this research field, it is critical to identify the preictal interval, the transition from regular brain activity to a seizure. While previous studies have explored various Electroencephalogram (EEG) based methodologies for prediction, few have been clinically applicable. Recent studies have underlined the dynamic nature of EEG data, characterised by data changes with time, known as concept drifts, highlighting the need for automated methods to detect and adapt to these changes. In this study, we investigate the effectiveness of automatic concept drift adaptation methods in seizure prediction. Three patient-specific seizure prediction approaches with a 10-minute prediction horizon are compared: a seizure prediction algorithm incorporating a window adjustment method by optimising performance with Support Vector Machines (Backwards-Landmark Window), a seizure prediction algorithm incorporating a data-batch (seizures) selection method using a logistic regression (Seizure-batch Regression), and a seizure prediction algorithm with a dynamic integration of classifiers (Dynamic Weighted Ensemble). These methods incorporate a retraining process after each seizure and use a combination of univariate linear features and SVM classifiers. The Firing Power was used as a post-processing technique to generate alarms before seizures. These methodologies were compared with a control approach based on the typical machine learning pipeline, considering a group of 37 patients with Temporal Lobe Epilepsy from the EPILEPSIAE database. The best-performing approach (Backwards-Landmark Window) achieved results of 0.75 ± 0.33 for sensitivity and 1.03 ± 1.00 for false positive rate per hour. This new strategy performed above chance for 89% of patients with the surrogate predictor, whereas the control approach only validated 46%.


Assuntos
Epilepsia , Qualidade de Vida , Humanos , Convulsões/diagnóstico , Epilepsia/diagnóstico , Eletroencefalografia/métodos , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte
4.
PLoS One ; 19(4): e0300641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568906

RESUMO

Numerous classification and regression problems have extensively used Support Vector Machines (SVMs). However, the SVM approach is less practical for large datasets because of its processing cost. This is primarily due to the requirement of optimizing a quadratic programming problem to determine the decision boundary during training. As a result, methods for selecting data instances that have a better likelihood of being chosen as support vectors by the SVM algorithm have been developed to help minimize the bulk of training data. This paper presents a density-based method, called Density-based Border Identification (DBI), in addition to four different variations of the method, for the lessening of the SVM training data through the extraction of a layer of border instances. For higher-dimensional datasets, the extraction is performed on lower-dimensional embeddings obtained by Uniform Manifold Approximation and Projection (UMAP), and the resulting subset can be repetitively used for SVM training in higher dimensions. Experimental findings on different datasets, such as Banana, USPS, and Adult9a, have shown that the best-performing variations of the proposed method effectively reduced the size of the training data and achieved acceptable training and prediction speedups while maintaining an adequate classification accuracy compared to training on the original dataset. These results, as well as comparisons to a selection of related state-of-the-art methods from the literature, such as Border Point extraction based on Locality-Sensitive Hashing (BPLSH), Clustering-Based Convex Hull (CBCH), and Shell Extraction (SE), suggest that our proposed methods are effective and potentially useful.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Análise por Conglomerados , Probabilidade
5.
PLoS One ; 19(4): e0299267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568950

RESUMO

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Medicina de Precisão , Heterogeneidade Genética , Imageamento por Ressonância Magnética/métodos , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte , Receptores ErbB/genética
6.
Technol Cancer Res Treat ; 23: 15330338241234791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592291

RESUMO

INTRODUCTION: The incidence of breast cancer has steadily risen over the years owing to changes in lifestyle and environment. Presently, breast cancer is one of the primary causes of cancer-related deaths among women, making it a crucial global public health concern. Thus, the creation of an automated diagnostic system for breast cancer bears great importance in the medical community. OBJECTIVES: This study analyses the Wisconsin breast cancer dataset and develops a machine learning algorithm for accurately classifying breast cancer as benign or malignant. METHODS: Our research is a retrospective study, and the main purpose is to develop a high-precision classification algorithm for benign and malignant breast cancer. To achieve this, we first preprocessed the dataset using standard techniques such as feature scaling and handling missing values. We assessed the normality of the data distribution initially, after which we opted for Spearman correlation analysis to examine the relationship between the feature subset data and the labeled data, considering the normality test results. We subsequently employed the Wilcoxon rank sum test to investigate the dissimilarities in distribution among various breast cancer feature data. We constructed the feature subset based on statistical results and trained 7 machine learning algorithms, specifically the decision tree, stochastic gradient descent algorithm, random forest algorithm, support vector machine algorithm, logistics algorithm, and AdaBoost algorithm. RESULTS: The results of the evaluation indicated that the AdaBoost-Logistic algorithm achieved an accuracy of 99.12%, outperforming the other 6 algorithms and previous techniques. CONCLUSION: The constructed AdaBoost-Logistic algorithm exhibits significant precision with the Wisconsin breast cancer dataset, achieving commendable classification performance for both benign and malignant breast cancer cases.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Estudos Retrospectivos , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte
7.
Int J Med Inform ; 186: 105442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564960

RESUMO

BACKGROUND: The nature of activities practiced in healthcare organizations makes risk management the most crucial issue for decision-makers, especially in developing countries. New technologies provide effective solutions to support engineers in managing risks. PURPOSE: This study aims to develop a Decision Support System (DSS) adapted to the healthcare constraints of developing countries that enables the provision of decisions about risk tolerance classes and prioritizations of risk treatment. METHODS: Failure Modes and Effects Analysis (FMEA) is a popular method for risk assessment and quality improvement. Fuzzy logic theory is combined with this method to provide a robust tool for risk evaluation. The fuzzy FMEA provides fuzzy Risk Priority Number (RPN) values. The artificial neural network is a powerful algorithm used in this study to classify identified risk tolerances. The risk treatment process is taken into consideration in this study by improving FMEA. A new factor is added to evaluate the feasibility of correcting the intolerable risks, named the control factor, to prioritize these risks and start with the easiest. The new factor is combined with the fuzzy RPN to obtain intolerable risk prioritization. This prioritization is classified using the support vector machine. FINDINGS: Results prove that our DSS is effective according to these reasons: (1) The fuzzy-FMEA surmounts classical FMEA drawbacks. (2) The accuracy of the risk tolerance classification is higher than 98%. (3) The second fuzzy inference system developed (the control factor for intolerable risks with the fuzzy RPN) is useful because of the imprecise situation. (4) The accuracy of the fuzzy-priority results is 74% (mean of testing and training data). CONCLUSIONS: Despite the advantages, our DSS also has limitations: There is a need to generalize this support to other healthcare departments rather than one case study (the sterilization unit) in order to confirm its applicability and efficiency in developing countries.


Assuntos
Gestão de Riscos , Máquina de Vetores de Suporte , Humanos , Medição de Risco , Redes Neurais de Computação , Atenção à Saúde , Lógica Fuzzy
8.
PLoS One ; 19(4): e0301541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635591

RESUMO

Many individual studies in the literature observed the superiority of tree-based machine learning (ML) algorithms. However, the current body of literature lacks statistical validation of this superiority. This study addresses this gap by employing five ML algorithms on 200 open-access datasets from a wide range of research contexts to statistically confirm the superiority of tree-based ML algorithms over their counterparts. Specifically, it examines two tree-based ML (Decision tree and Random forest) and three non-tree-based ML (Support vector machine, Logistic regression and k-nearest neighbour) algorithms. Results from paired-sample t-tests show that both tree-based ML algorithms reveal better performance than each non-tree-based ML algorithm for the four ML performance measures (accuracy, precision, recall and F1 score) considered in this study, each at p<0.001 significance level. This performance superiority is consistent across both the model development and test phases. This study also used paired-sample t-tests for the subsets of the research datasets from disease prediction (66) and university-ranking (50) research contexts for further validation. The observed superiority of the tree-based ML algorithms remains valid for these subsets. Tree-based ML algorithms significantly outperformed non-tree-based algorithms for these two research contexts for all four performance measures. We discuss the research implications of these findings in detail in this article.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos , Máquina de Vetores de Suporte , Modelos Logísticos
9.
Sci Rep ; 14(1): 8928, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637673

RESUMO

Estimating penetration rates of Jumbo drills is crucial for optimizing underground mining drilling processes, aiming to reduce costs and time. This study investigates various regression and machine learning methods, including Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Random Forests (RF), to predict the penetration rates (ROP) using multivariate inputs such as operation parameters and rock mass characteristics. The Rock Mass Drillability Index (RDi), incorporating both intact rock properties and structural parameters, was utilized to characterize the rock mass. The dataset was split into 80% for training and 20% for testing. Performance metrics including correlation coefficient (R2), variance accounted for (VAF), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were calculated for each method to evaluate the accuracy of the predictions. SVR exhibited the best prediction performance for ROP, achieving the highest R2, lowest RMSE, MAE, and MAPE, as well as the largest VAF values of 0.94, 0.15, 0.11, 4.84, and 94.13 during training, and 0.91, 0.19, 0.13, 6.02, and 91.11 during testing, respectively. With this high accuracy, we conclude that the proposed machine learning algorithms are valuable and efficient predictors for estimating jumbo drill penetration rates in underground mining operations.


Assuntos
Aprendizado de Máquina , Máquina de Vetores de Suporte , Redes Neurais de Computação , Algoritmos
10.
CNS Neurosci Ther ; 30(4): e14708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600857

RESUMO

AIMS: Sleep disturbance is a prevalent nonmotor symptom of Parkinson's disease (PD), however, assessing sleep conditions is always time-consuming and labor-intensive. In this study, we performed an automatic sleep-wake state classification and early diagnosis of PD by analyzing the electrocorticography (ECoG) and electromyogram (EMG) signals of both normal and PD rats. METHODS: The study utilized ECoG power, EMG amplitude, and corticomuscular coherence values extracted from normal and PD rats to construct sleep-wake scoring models based on the support vector machine algorithm. Subsequently, we incorporated feature values that could act as diagnostic markers for PD and then retrained the models, which could encompass the identification of vigilance states and the diagnosis of PD. RESULTS: Features extracted from occipital ECoG signals were more suitable for constructing sleep-wake scoring models than those from frontal ECoG (average Cohen's kappa: 0.73 vs. 0.71). Additionally, after retraining, the new models demonstrated increased sensitivity to PD and accurately determined the sleep-wake states of rats (average Cohen's kappa: 0.79). CONCLUSION: This study accomplished the precise detection of substantia nigra lesions and the monitoring of sleep-wake states. The integration of circadian rhythm monitoring and disease state assessment has the potential to improve the efficacy of therapeutic strategies considerably.


Assuntos
Doença de Parkinson , Ratos , Animais , Doença de Parkinson/diagnóstico , Máquina de Vetores de Suporte , Eletroencefalografia , Sono , Vigília
11.
PLoS One ; 19(4): e0301902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603697

RESUMO

Spectral collinearity and limited spectral datasets are the problems influencing Chemical Oxygen Demand (COD) modeling. To address the first problem and obtain optimal modeling range, the spectra are preprocessed using six methods including Standard Normal Variate, Savitzky-Golay Smoothing Filtering (SG) etc. Subsequently, the 190-350 nm spectral range is divided into 10 subintervals, and Interval Partial Least Squares (IPLS) is used to perform PLS modeling on each interval. The results indicate that it is best modeled in the 7th range (238~253 nm). The values of Mean Square Error (MSE), Mean Absolute Error (MAE) and R2score of the model without pretreatment are 1.6489, 1.0661, and 0.9942. After pretreatment, the SG is better than others, with MSE and MAE decreasing to 1.4727, 1.0318 and R2score improving to 0.9944. Using the optimal model, the predicted COD for three samples are 10.87 mg/L, 14.88 mg/L, and 19.29 mg/L. To address the problem of the small dataset, using Generative Adversarial Networks for data augmentation, three datasets are obtained for Support Vector Machine (SVM) modeling. The results indicate that, compared to the original dataset, the SVM's MSE and MAE have decreased, while its accuracy has improved by 2.88%, 11.53%, and 11.53%, and the R2score has improved by 18.07%, 17.40%, and 18.74%.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise da Demanda Biológica de Oxigênio , Análise dos Mínimos Quadrados , Água , Algoritmos
12.
PLoS One ; 19(4): e0302037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625923

RESUMO

The tear strength of textiles is a crucial characteristic of product quality. However, during the laboratory testing of this indicator, factors such as equipment operation, human intervention, and test environment can significantly influence the results. Currently, there is a lack of traceable records for the influencing factors during the testing process, and effective classification of testing activities is not achieved. Therefore, this study proposes a state-awareness and classification approach for fabric tear performance testing based on multi-source data. A systematic design is employed for fabric tear performance testing activities, which can real-time monitor electrical parameters, operational environment, and operator behavior. The data are collected, preprocessed, and a Decision Tree Support Vector Machine (DTSVM) is utilized for classifying various working states, and introducing ten-fold cross-validation to enhance the performance of the classifier, forming a comprehensive awareness of the testing activities. Experimental results demonstrate that the system effectively perceives fabric tear performance testing processes, exhibiting high accuracy in the classification of different fabric testing states, surpassing 98.73%. The widespread application of this system contributes to continuous improvement in the workflow and traceability of fabric tear performance testing processes.


Assuntos
Máquina de Vetores de Suporte , Têxteis , Humanos , Eletricidade , Percepção
13.
Sci Rep ; 14(1): 9116, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643305

RESUMO

RNA modifications are pivotal in the development of newly synthesized structures, showcasing a vast array of alterations across various RNA classes. Among these, 5-hydroxymethylcytosine (5HMC) stands out, playing a crucial role in gene regulation and epigenetic changes, yet its detection through conventional methods proves cumbersome and costly. To address this, we propose Deep5HMC, a robust learning model leveraging machine learning algorithms and discriminative feature extraction techniques for accurate 5HMC sample identification. Our approach integrates seven feature extraction methods and various machine learning algorithms, including Random Forest, Naive Bayes, Decision Tree, and Support Vector Machine. Through K-fold cross-validation, our model achieved a notable 84.07% accuracy rate, surpassing previous models by 7.59%, signifying its potential in early cancer and cardiovascular disease diagnosis. This study underscores the promise of Deep5HMC in offering insights for improved medical assessment and treatment protocols, marking a significant advancement in RNA modification analysis.


Assuntos
5-Metilcitosina/análogos & derivados , Algoritmos , Redes Neurais de Computação , Teorema de Bayes , Máquina de Vetores de Suporte , RNA
14.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474904

RESUMO

During the growing season, olives progress through nine different phenological stages, starting with bud development and ending with senescence. During their lifespan, olives undergo changes in their external color and chemical properties. To tackle these properties, we used hyperspectral imaging during the growing season of the olives. The objective of this study was to develop a lightweight model capable of identifying olives in the hyperspectral images using their spectral information. To achieve this goal, we utilized the hyperspectral imaging of olives while they were still on the tree and conducted this process throughout the entire growing season directly in the field without artificial light sources. The images were taken on-site every week from 9:00 to 11:00 a.m. UTC to avoid light saturation and glitters. The data were analyzed using training and testing classifiers, including Decision Tree, Logistic Regression, Random Forest, and Support Vector Machine on labeled datasets. The Logistic Regression model showed the best balance between classification success rate, size, and inference time, achieving a 98% F1-score with less than 1 KB in parameters. A reduction in size was achieved by analyzing the wavelengths that were critical in the decision making, reducing the dimensionality of the hypercube. So, with this novel model, olives in a hyperspectral image can be identified during the season, providing data to enhance a farmer's decision-making process through further automatic applications.


Assuntos
Algoritmos , Olea , Imageamento Hiperespectral , Máquina de Vetores de Suporte
15.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474935

RESUMO

Hyperspectral imaging (HSI) has become a very compelling technique in different scientific areas; indeed, many researchers use it in the fields of remote sensing, agriculture, forensics, and medicine. In the latter, HSI plays a crucial role as a diagnostic support and for surgery guidance. However, the computational effort in elaborating hyperspectral data is not trivial. Furthermore, the demand for detecting diseases in a short time is undeniable. In this paper, we take up this challenge by parallelizing three machine-learning methods among those that are the most intensively used: Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB) algorithms using the Compute Unified Device Architecture (CUDA) to accelerate the classification of hyperspectral skin cancer images. They all showed a good performance in HS image classification, in particular when the size of the dataset is limited, as demonstrated in the literature. We illustrate the parallelization techniques adopted for each approach, highlighting the suitability of Graphical Processing Units (GPUs) to this aim. Experimental results show that parallel SVM and XGB algorithms significantly improve the classification times in comparison with their serial counterparts.


Assuntos
Algoritmos , Neoplasias Cutâneas , Humanos , Aprendizado de Máquina , Imageamento Hiperespectral , Aceleração , Máquina de Vetores de Suporte
16.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38544162

RESUMO

This work aims to compare the performance of Machine Learning (ML) and Deep Learning (DL) algorithms in detecting users' heartbeats on a smart bed. Targeting non-intrusive, continuous heart monitoring during sleep time, the smart bed is equipped with a 3D solid-state accelerometer. Acceleration signals are processed through an STM 32-bit microcontroller board and transmitted to a PC for recording. A photoplethysmographic sensor is simultaneously checked for ground truth reference. A dataset has been built, by acquiring measures in a real-world set-up: 10 participants were involved, resulting in 120 min of acceleration traces which were utilized to train and evaluate various Artificial Intelligence (AI) algorithms. The experimental analysis utilizes K-fold cross-validation to ensure robust model testing across different subsets of the dataset. Various ML and DL algorithms are compared, each being trained and tested using the collected data. The Random Forest algorithm exhibited the highest accuracy among all compared models. While it requires longer training time compared to some ML models such as Naïve Bayes, Linear Discrimination Analysis, and K-Nearest Neighbour Classification, it keeps substantially faster than Support Vector Machine and Deep Learning models. The Random Forest model demonstrated robust performance metrics, including recall, precision, F1-scores, macro average, weighted average, and overall accuracy well above 90%. The study highlights the better performance of the Random Forest algorithm for the specific use case, achieving superior accuracy and performance metrics in detecting user heartbeats in comparison to other ML and DL models tested. The drawback of longer training times is not too relevant in the long-term monitoring target scenario, so the Random Forest model stands out as a viable solution for real-time ballistocardiographic heartbeat detection, showcasing potential for healthcare and wellness monitoring applications.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Frequência Cardíaca , Teorema de Bayes , Aprendizado de Máquina , Máquina de Vetores de Suporte
17.
Comput Biol Med ; 173: 108348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531249

RESUMO

Drug-induced diseases are the most important component of iatrogenic disease. It is the duty of doctors to provide a reasonable and safe dose of medication. Gunqile-7 is a Mongolian medicine with analgesic and anti-inflammatory effects. As a foreign substance in the body, even with reasonable medication, it may produce varying degrees of adverse reactions or toxic side effects. Since the cost of collecting Gunqile-7 for pharmacological animal trials is high and the data sample is small, this paper employs transfer learning and data augmentation methods to study the toxicity of Gunqile-7. More specifically, to reduce the necessary number of training samples, the data augmentation approach is employed to extend the data set. Then, the transfer learning method and one-dimensional convolutional neural network are utilized to train the network. In addition, we use the support vector machine-recursive feature elimination method for feature selection to reduce features that have adverse effects on model predictions. Furthermore, due to the important role of the pre-trained model of transfer learning, we select a quantitative toxicity prediction model as the pre-trained model, which is consistent with the purpose of this paper. Lastly, the experimental results demonstrate the efficiency of the proposed method. Our method can improve accuracy by up to 9 percentage points compared to the method without transfer learning on a small sample set.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Máquina de Vetores de Suporte
18.
Comput Biol Med ; 173: 108280, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547655

RESUMO

BACKGROUND: Timely detection of neurodevelopmental and neurological conditions is crucial for early intervention. Specific Language Impairment (SLI) in children and Parkinson's disease (PD) manifests in speech disturbances that may be exploited for diagnostic screening using recorded speech signals. We were motivated to develop an accurate yet computationally lightweight model for speech-based detection of SLI and PD, employing novel feature engineering techniques to mimic the adaptable dynamic weight assignment network capability of deep learning architectures. MATERIALS AND METHODS: In this research, we have introduced an advanced feature engineering model incorporating a novel feature extraction function, the Factor Lattice Pattern (FLP), which is a quantum-inspired method and uses a superposition-like mechanism, making it dynamic in nature. The FLP encompasses eight distinct patterns, from which the most appropriate pattern was discerned based on the data structure. Through the implementation of the FLP, we automatically extracted signal-specific textural features. Additionally, we developed a new feature engineering model to assess the efficacy of the FLP. This model is self-organizing, producing nine potential results and subsequently choosing the optimal one. Our speech classification framework consists of (1) feature extraction using the proposed FLP and a statistical feature extractor; (2) feature selection employing iterative neighborhood component analysis and an intersection-based feature selector; (3) classification via support vector machine and k-nearest neighbors; and (4) outcome determination using combinational majority voting to select the most favorable results. RESULTS: To validate the classification capabilities of our proposed feature engineering model, designed to automatically detect PD and SLI, we employed three speech datasets of PD and SLI patients. Our presented FLP-centric model achieved classification accuracy of more than 95% and 99.79% for all PD and SLI datasets, respectively. CONCLUSIONS: Our results indicate that the proposed model is an accurate alternative to deep learning models in classifying neurological conditions using speech signals.


Assuntos
Doença de Parkinson , Transtorno Específico de Linguagem , Criança , Humanos , Fala , Doença de Parkinson/diagnóstico , Máquina de Vetores de Suporte
19.
Comput Biol Med ; 173: 108341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552280

RESUMO

IgA Nephropathy (IgAN) is a disease of the glomeruli that may eventually lead to chronic kidney disease or kidney failure. The signs and symptoms of IgAN nephropathy are usually not specific enough and are similar to those of other glomerular or inflammatory diseases. This makes a correct diagnosis more difficult. This study collected data from a sample of adult patients diagnosed with primary IgAN at the First Affiliated Hospital of Wenzhou Medical University, with proteinuria ≥1 g/d at the time of diagnosis. Based on these samples, we propose a machine learning framework based on weIghted meaN oF vectOrs (INFO). An enhanced COINFO algorithm is proposed by merging INFO, Cauchy Mutation (CM) and Oppositional-based Learning (OBL) strategies. At the same time, COINFO and Support Vector Machine (SVM) were integrated to construct the BCOINFO-SVM framework for IgAN diagnosis and prediction. Initially, the proposed enhanced COINFO is evaluated using the IEEE CEC2017 benchmark problems, with the outcomes demonstrating its efficient optimization capability and accuracy in convergence. Furthermore, the feature selection capability of the proposed method is verified on the public medical datasets. Finally, the auxiliary diagnostic experiment was carried out through IgAN real sample data. The results demonstrate that the proposed BCOINFO-SVM can screen out essential features such as High-Density Lipoprotein (HDL), Uric Acid (UA), Cardiovascular Disease (CVD), Hypertension and Diabetes. Simultaneously, the BCOINFO-SVM model achieves an accuracy of 98.56%, with sensitivity at 96.08% and specificity at 97.73%, making it a potential auxiliary diagnostic model for IgAN.


Assuntos
Glomerulonefrite por IGA , Hipertensão , Adulto , Humanos , Glomerulonefrite por IGA/diagnóstico , Proteinúria/diagnóstico , Glomérulos Renais , Máquina de Vetores de Suporte
20.
Comput Biol Med ; 173: 108297, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554662

RESUMO

Percutaneous endoscopic lumbar discectomy (PELD) is one of the main means of minimally invasive spinal surgery, and is an effective means of treating lumbar disc herniation, but its early recurrence is still difficult to predict. With the development of machine learning technology, the auxiliary model based on the prediction of early recurrent lumbar disc herniation (rLDH) and the identification of causative risk factors have become urgent problems in current research. However, the screening ability of current models for key factors affecting the prediction of rLDH, as well as their predictive ability, needs to be improved. Therefore, this paper presents a classification model that utilizes wrapper feature selection, developed through the integration of an enhanced bat algorithm (BDGBA) and support vector machine (SVM). Among them, BDGBA increases the population diversity and improves the population quality by introducing directional mutation strategy and guidance-based strategy, which in turn allows the model to secure better subsets of features. Furthermore, SVM serves as the classifier for the wrapper feature selection method, with its classification prediction results acting as a fitness function for the feature subset. In the proposed prediction method, BDGBA is used as an optimizer for feature subset filtering and as an objective function for feature subset evaluation based on the classification results of the support vector machine, which improves the interpretability and prediction accuracy of the model. In order to verify the performance of the proposed method, this paper proves the performance of the model through global optimization experiments and prediction experiments on real data sets. The accuracy of the proposed rLDH prediction model is 93.49% and sensitivity is 88.33%. The experimental results show that Level of herniated disk, Modic change, Disk height, Disk length, and Disk width are the key factors for predicting rLDH, and the proposed method is an effective auxiliary diagnosis method.


Assuntos
Discotomia Percutânea , Deslocamento do Disco Intervertebral , Humanos , Discotomia Percutânea/métodos , Deslocamento do Disco Intervertebral/genética , Deslocamento do Disco Intervertebral/cirurgia , Máquina de Vetores de Suporte , Vértebras Lombares/cirurgia , Recidiva , Resultado do Tratamento , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...